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Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given
for a correct method, provided this is shown by written working. You are therefore advised to show all
working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.

1.  [Maximum mark: 6]
The following diagram shows a circle with centre O and radius 4cm.

diagram not to scale

The points P, Q and R lie on the circumference of the circle and POR = 0, where 6 is
measured in radians.

The length of arc PQR is 10cm.

(a) Find the perimeter of the shaded sector. [2]
(b) Find 6. [2]
(¢) Find the area of the shaded sector. [2]

(This question continues on the following page)
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2. [Maximum mark: 5]

A function f is defined by f(x) =1——-i—2, where x e R, x=2.
(@) The graph of y = f(x) has a vertical asymptote and a horizontal asymptote.
Write down the equation of
(i) the vertical asymptote;
(ii)  the horizontal asymptote. [2]
(b) Find the coordinates of the point where the gra;gnh of y=f(x) intersects
(i) the y-axis;

(i) the x-axis. [2]

_(\I

(This question continues on the following page)
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(Question 2 continued)

(c) On the following set of axes, sketch the graph of y = f(x), showing all the features
found in parts (a) and (b). [1]

Turn over
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3.
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[Maximum mark: 5]
Events 4 and B are such that P(4) = 0.4, P(4|B)=0.25 and P(4UB) =0.55.

Find P(B).

..........................................................................
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[Maximum mark: 6]

The following diagram shows part of the graph of y = ,x = for x20.
X+

y

The shaded region R is bounded by the curve, the x-axis and the line x =c.
The area of R is In3.

Find the value of c.

............................................................................
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[Maximum mark: 7]
The functions f and g are defined for x € R by
fx)=ax+b,where a, beZ
g@)=x"+x+3.

Find the two possible functions f such that (g o f)(x) = 4x* — 14x + 15.

& | '

..........................................................................

..........................................................................

..........................................................................
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[Maximum mark: 5]

A continuous random variable X" has probability density function f defined by

f() %, a<x<3a
x)=X2a

0, otherwise

where «a is a positive real number.

(a) State E(X) interms of a. [1]
(b) Use integration to find Var(X) in terms of a. [4]
Turn over’
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[Maximum mark: 7]

- 1
Use mathematical induction to prove that . b= : for all integers n> 1.

= (r+1)! N (n+1)

{
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[Maximum mark: 7]
The functions f and g are defined by

f(x) =cosx, Ostg

T

g(x) = tanx, OSx<~2—.

The curves y =f(x) and y = g(x) intersect at a point P whose x-coordinate is £,
T

where 0 <k < 5
(@) Show that cos’k = sink. : ‘ [1]

(b) Hence, show that the tangent to the curve y =f(x) at P and the tangent to the
curve y = g(x) at P intersect at right angles. [3]

(c) Find the value of sink. Give your answer in the form a+b ,where a, c € Z
and be Z'. & [3]

Turn over
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9. [Maximum mark: 9]

The following diagram shows parallelogram OABC with OﬁA =a, OC=c¢ and |¢|=2|al,
where |a|#0.

A M B

O : &

The angle between Oj% and OC is 6, where 0 < f<m.
Point M is on [AB] such that AM =k AB, where 0 <k <1 and OM+MC=0.
(a) Express OT\/I and MC in terms of @ and c. [2]

(b) Hence, use a vector method to show that |a|* (1 - 2k) (2 cos@—(1 ~ 2k)) =0. [3]

(¢) Find the range of values for 6 such that there are two possible positions for M. [4]

..........................................................................
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Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
10. [Maximum mark: 14]
A circle with equation x* + 1* = 9 has centre (0, 0) and radius 3.
Atriangle, PQR, is inscribed in the circle with its vertices at P(-3, 0), Q(x, y) and R(x, —),

where Q and R are variable points in the first and fourth quadrants respectively. This is
shown in the following diagram. ’

Qx.)

>

P(=3,0) ' sl .

R(x ’ _y)
(a) For point Q, show that y =v9—x | [1]
(b) Hence, find an expression for 4, the area of triangle PQR , in terms of x. [3]
(¢) Show that ol M [4]
dx VO

(d) Hence or otherwise, find the y-coordinate of R such that 4 is a maximum. [6]

Turn over
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Do not write solutions on this page.

13-

[Maximum mark: 22]

Consider the complex number # =—1 +\/§i '

(@) By finding the modulus and argument of u, show that u =2Ci2?’j.

(b) (i) Find the smallest positive integer » such that #" is a real number.
(i)  Find the value of #" when n takes the value found in part (b)(i).

(c) Consider the equation z* + 5z° + 10z + 12 =0, where z € C.

(i)  Given that u is a root of 2 + 5z° + 10z + 12 = 0, find the other roots.

(i) By using a suitable transformation from z to w, or otherwise, find the roots of the
equation 1 + 5w + 10w+ 12w’ =0, where w € C.

(d) Consider the equation 2 =2z, where ze C, z#0.

By expressing z in the form a + bi, find the roots of the equation.

(3]

(]

(9]

€|

(51
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Do not write solutions on this page.

12. [Maximum mark: 17]
(a) By using an appropriate substitution, show that J'cos\/; dx = 2+/x sin/x + 2cosv/x +C. [6]

The following diagram shows part of the curve y = cos/x for x = 0.

4

A

The curve intersects the x-axis at x,, x,, x5, x,, ....

. ( 2n— 1)2 n’
The nth x-intercept of the curve, x —

n

is given by x, = ,Where n € Z".
(b)  Write down a similar expression for x,, . [1]

The regions bounded by the curve and the x-axis are denoted by R, R,, R,, ..., as shown
on the above diagram.

(c) Calculate the area of region R,.
Give your answer in the form knn, where k e Z". (7]

(d) Hence, show that the areas of the regions bounded by the curve and the x-axis,
R,, R,, R,, ..., form an arithmetic sequence. [3]




